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Abstract. A pictorial representation of the algorithm using successive expansion 
method for the nonorthogonal VB calculations is given. With the help of this 
representation and the graph analysis, the efficiency of this algorithm is improved 
and the N! problem is reduced by a factor of about (N!) 1/2. An ab initio VB 
program for valence bond self-consistent-field (VBSCF) calculations has been 
implemented based on this algorithm. Some VBSCF calculations have been per- 
formed for systems of up to 14 electrons. The statistics of the CPU time of the 
calculations indicate that this new group-theoretical approach is quite practical. 

Key words: VB method - N! problem - Group-theoretical approach - VBSCF 
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1 Introduction 

The MO-based methods are capable of providing reliable description of the 
electronic structures of molecular systems. However, it is difficult to interpret the 
highly accurate results with the qualitative terms such as valence [1], electron pairs 
and resonance [2], while these well-established concepts are particularly useful to 
rationalize chemical phenomena. Modern valence bond method provides a con- 
ceptual tool for the quantitative interpretation of chemical phenomena. A large 
number of successful applications of nonorthogonal VB approach to a wide range 
area of chemistry, including chemical bonding [4-6], reactions [7-9] and drugs 
[10], have been seen in recent years. A significant role in the success of the VB 
calculations is played by using nonorthogonal optimized orbitals for the construc- 
tion of the VB wave functions. However, the major drawback of the VB method is 
the N! problem due to the use of nonorthogonal orbitals. Owing to many years' 
efforts, considerable progress has been achieved for the efficient implementations 
of the nonorthogonal VB method based on the Slater-determinant expansion 
[11-18]. Another method is the group-theoretical approach [19-26] based on the 
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spin-free formalism 1-27, 28]. Although the mathematics of the spin-free VB formal- 
ism has been extensively investigated, most group theoretical approaches do not 
lead to a really practical algorithm. Some new technical developments in the 
group-theoretical approach have been made recently [24, 25]. For a system of spin 
S = 0, the VB calculation is reduced to the summation of (N - 1)!! permanents of 
order n ( =  N/2). By using the successive Laplace expansion method, the n! 
problem of a permanent is reduced to an n x 2"- 1 problem, thus the N! problem is 
reduced to an ( 2 n -  1)!!n x 2"-1 problem [-24]. To achieve a further reduction of 
the computational effort, a successive expansion procedure was introduced for the 
systematic collection of a large number of permanents [25]. In this scheme, the 
so-called "contracted cofactors" are used as the intermediate quantities. As the 
evaluation of individual permanents is avoided in this scheme, significant reduction 
of the computational effort can be achieved. To find a really powerful algorithm, 
the combination of computational techniques and fundamental-theoretical re- 
search is quite necessary. The introduction of graphical techniques, such as graphi- 
cal unitary group approach (GUGA) [29, 30] and the symmetric group-graphical 
approach (SGGA) [31] increases the effectiveness of the group-theoretical ap- 
proach to a great extent 1-26b]. Some sophisticated VB algorithms can also be 
represented in a much clearer way in graphical language [14, 18]. It should be 
mentioned here that the "contracted cofactors" introduced in Ref. [25] are actually 
the overlaps of VB wave functions of various number of electrons, and the VB wave 
functions can be characterized by the pairing patterns of various number of 
orbitals. In this work, the successive expansion method is further explored and the 
procedure can be characterized by the successive decomposition of the pairing 
patterns. With the help of this new representation and graph analysis, a further 
improved algorithm is proposed. This method has been implemented in a VB 
program for multiple-VB-structure calculations and VBSCF calculations. Some 
primary VBSCF calculations have been performed for CH4, C2H2, CzH 4 and C2H 6. 
The practice shows that the CPU time increases in a reasonable manner with N. 

2 Graphical representation of the successive expansion method 

Spin-free form of VB wave functions 

The VB wave functions of N electrons can be expressed as the following: 

TvB = etx~ 12, (1) 

where e~  is the Wigner operator written as 

e~ = ~ D~ (P)P. (2) 
P eS~ 

Dtl~ (P) are matrix elements of the irrep 1,2] = I-21/2n-s, lZS], f~ is the dimension of 
the irrep, and O is a product of N orbitals. The overlap and Hamiltonian matrix 
elements of VB wave functions can be expressed as 

<TvBI T(,B> = ~ D~(P)<QIPIY2'>, 
PeSs 

(3) 

(~v~IH]T~,B) = ~ Dt~(P)(I2IPHII2'),  (4) 
PeSs 
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In the following discussion, we restrict our consideration to the case S = 0. To 
make the notations more concise, the superscript [2] is omitted hereafter. Let 
us consider how to evaluate the Dll-values in a graphical way. Suppose we have 
a permutation P as below: 

1 2 ... N ) ,  
P = (5) 

P l  P 2  . . .  Ps 

we can represent it in a two-column-box form as follows: the numbers P~,Pz, . . . ,  PN 
are filled in these boxes from the left to the right and from the top to the bottom: 

p = 

Pl  P2 

P2k-  I P2k 

: 

PN-  1 PN 

(6) 

To evaluate D11(P), first we draw lines between every two elements in the following 
way [24, 26]: 1-2, 3-4, . . . ,  (2k - 1) - 2k . . . .  (N - 1)-N, then draw lines between 
every two elements of the pairs shown above, i.e. Pl-P2, ... ,Pzk-i--P2k, ... PN--1--PN; 
therefore, we get a graph of N elements linked by N lines. These lines form some 
topological loops. Suppose the number of loops is L, then we have 

D1 l ( p )  _- ( - -  I)N/2 -L. (7) 

From the above discussion, we can see easily that if the pairs in the two-column 
boxes are preserved, then neither the interchange of the two elements of a pair nor 
the interchange of the pairs changes the D11-values of the permutations. Thus for 
each pairing pattern, we can generate a set of 2N/Z(N/2)! permutations which have 
the same D11-value. One can generate all the permutations of SN by choosing all 
possible pairing patterns. For  the evaluation of a VB overlap matrix element, 
it turns out that the summation over each set of permutations corresponds to a 
permanent of a matrix of order N/2.  Thus, we have 

(~VB [ ~U~'B) = ~ D ~  (G~)per(G~), (8) 
i 

where G~ v is a pairing pattern of N orbitals, and per (G~) is the corresponding 
permanent of order N/2 .  The first summation runs over all (N -- 1)!! pairing 
patterns. Although the n! problem of a permanent can be significantly reduced 
[24, 32], a direct use of this expression is not very practical. As shown in a previous 
paper, the successive expansion method is much more efficient than the direct 
summation. In the following discussion, this procedure is represented in a simple 
way. 
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Graphical notations 

It is convenient to introduce some notations in the following discussions. Suppose 
G and G' are two patterns of n pairs of orbitals as follows: 

{ q h  - 4 '2  

G =  4,3 - 4,4 G ' =  

4 , 2 , - 1  - 4,2, 

4,; ~- 4,~" (9) 

4 , 1 n -  1 - ~b2n 

we use [G) and [G')  to denote the corresponding VB wave functions of 2n 
electrons 

[ G) = [ 7 ~) = et~ f2 

= eq~ 4,1(1) 4,z (2)-.- 4,2,(2n), (10) 

[G') ----1~') = et~ f2 ' 

= et~ 4,'~(1) 4,1 (2)... 4,1,(2n), (11) 

These wave functions describe the chemical bonding of the orbital pairs as shown 
in their corresponding pairing patterns. We define the overlap of two pairing 
patterns as the overlap of the two corresponding VB wave functions, i.e. 

(GIG')=- (WIW')= ~ D11(P)(OIPIO') 
P e S2. 

(12) 

= Z D x x  (GN)per(G~).  
i 

One can define in a similar way the overlap of two subpatterns ofm (m < n) pairs as 
the overlap of the corresponding VB wave functions of 2m electrons• 

Expansion of (G[G')  using the overlaps of subpatterns 

With the overlaps of subpatterns, one can express the VB overlap matrix elements 
in a way which is quite similar to the Laplace expansion of a determinant: 

( G  I G t )  ~--- Z d l l ( G A )  ~ A~(GAI G'i), (13) 
Ga i = 1  

where 

and 

GA = 4 , 1 - ¢ j  (J = 2,3, . . .  , 2n)  

dx 1 (GA) = 1 
--  ~ otherwise. 
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G A is the subpattern of G without the first pair and the orbital qSj in the subpattern 
is replaced by ~b2. For  example, 

Ga=41-(o2,,_l,  then GA= ~b2 - q~2,~ (14) 

q h . - ~  - ~ . .  

G '~ is the subpattern of G' without the ith pair. A~ can be expressed as 

Ai = (GAI G'i) (G'i = O'z,-1-(o'zi) 

= (q~l[ q%i,-x) (q~jl ~ie) + (qNj[ ~ie-a)  (q~a 1%bi~), (15) 

and [G a)  and [G 'i) denote the VB wave functions of ( 2 n -  2) electrons cor- 
responding to the two subpatterns G a and G '~, respectively. Obviously, if all the 
quantities (GAI G '~) are available, it requires only n(2n - 1) multiplications to 
compute the quantity (G] G'). The mathematical proof of the above expressions is 
trivial. One can find all necessary details in Refs. [24, 25] for the proof. 

Successive expansion of  the overlaps of  the subpatterns 

From the above discussion, we know that it will be quite easy to evaluate (G[ G') if 
all the overlap elements (G a I G'i) are available. Therefore, the next problem is how 
to evaluate all these quantities in an efficient way. Obviously, the same expansion 
method can be applied to the evaluation of these overlaps and the quantities of 
lower subpatterns successively• Equations (13) and (14) show that from G one can 
generate 2 n -  1 subpatterns G A, and for each G a there are n overlap elements 
(GAIG'I). From the same reasoning, we know that from each G A there are 
n overlap elements (GA[ G'i). From the same reasoning, we know that from each 
G A one obtains 2 n - - 3  lower subpatterns GAB, and for each G AB there are 
n(n - 1)/2 overlaps (GaB I G 'ij) (i < j  = 1,2, ... ,n). That means we can compute 
(GA[G '~) by using the overlaps of the lower subpatterns (GABIG'iJ). This proced- 
ure can be continued, and can be represented schematically as follows: 

patterns overlaps 
G (GIG') 

NG(n -- 1) G A (GAI G 'i) (i = 1,2, . . . ,  n) 

Na(n -- 2) G AB (GAB I G 'ij) (i < j  = 1,2, ... ,n) 

Na(m) G a B ' °  ( G A B D I G ' i J I )  ( i < j <  ... < / =  1,2, . . . ,n) 
$ ? 

where Na(m) denotes the number of unique subpatterns of m pairs. Obviously, 
Na(n) = 1 and Na(n - 1) = n. Table 1 gives these numbers. Therefore, to compute 
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Table 1. Number of unique subpatterns for the evaluation of one overlap matrix element of VB wave 
functions of N electrons 

N Number of pairs in the subpatterns 

2 3 4 5 6 7 8 9 

6 5 
8 15 7 

10 51 28 9 
12 102 148 45 
14 222 370 325 
16 370 1390 975 
18 650 2780 5415 
20 975 7200 12635 

11 
66 13 

606 91 15 
2121 1015 120 17 

15771 4060 1576 153 19 

1 - -2  
3---4 
5 - -6  
7---8 

3---4 2---4 2---3 2--8 2-`5 2--8 2--7 
5--6 5---6 5---6 3-,.4 3---4 3--4 3--4 
7--8 7-`5 7---8 7--.8 7--8 5---8 6---8 

5--6 4--6 4-,5 4--6 4 -7  3-6 3-5 3--8 3--7 3--4 3--4 3--4 3--4 3--4 3--4 
7--8 7--8 7--8 5--6 5--6 7-6 7--8 5--6 5--6 7--8 5--6 6--8 6 -7  5--8 5--7 

Fig. 1. The decomposition 
of a pattern of 8 elements 
with the lexical ordering 
(see Sect. 3). The lines 
indicate from which higher 
subpattern a lower 
subpattern is generated 

the overlap matrix element ( G I G ' > ,  one first performs the pairing-pattern- 
decomposi t ion  and obtains a tree of patterns of various numbers  of pairs. A simple 
example of a pat tern-decomposi t ion tree is shown in Fig. 1. 

In principle, this pat tern-decomposi t ion analysis is required only once for 
a certain number  of  electrons and spin. In  actual computat ion,  one starts f rom the 
computa t ion  of the overlaps of  the lowest subpatterns at the bo t tom of the tree. 
The quantities corresponding to the lower subpatterns are repeatedly used for the 
computa t ion  of  the higher ones. Similar recursive strategy for the evaluat ion of 
density matrices of various orders was discussed by Gerra t t  [33] and applied by 
Pyper  and Gerra t t  [34]. Finally, one obtains the VB overlap matrix element at the 
top  of the tree. The  total number  of multiplications required in the whole procedure  
can be given as 

n! (2m - 1) (16) 
M = Nc(m) (n - -m) ! (m- -  1)!" 

r a = 2  
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One should point out that the pattern-decomposition is not unique. By choosing 
a different way of decomposition, one obtains a different number of M. One 
essential problem is how to find a way which gives a small M. This will be discussed 
in Sect. 4 in more detail. 

Matrix elements of the Hamiltonian 

The above strategy can also be applied to the evaluation of the Hamiltonian matrix 
elements. It is convenient to define a function Pa(m) as follows: 

Pa(2m - 1) = 2m 
(m = 1,2, ... ). (17) 

PA(2m) = 2m - 1 

One can partition a Hamiltonian matrix element into two parts 

<GIHIG'> = Ha -4- H2. (18) 

Ha is the contribution of the one-electron operators and partially of the two- 
electron operators: 

2n 

Ha = Z daa(Ga) ~ Fp<GalG">, (19) 
a<b i= l  

GA : ~a- -~b  

where 

1 if PA(a) = b, 
and dal (Ga)= 1 

- -  ~ otherwise. 

G a is a subpattern of G without the elements ~b a and ~bb, and G 'i is a subpattern of G' 
without the ith pair. If Pa(a) # b, then one pair in G a is 

~PA(a)--~PA(b) 

F~ a can be evaluated as 

+ < ~ba, I @hi- x > <~ba= l f(1) I q~i> + <q~= 1 ~b~i- a > < q~., I f( l )  [ 6~i > 

+ <4,o, q~,=lo(1,2)l q~h,-a q~h,> + <q~= 4~=,10 (1, 2)1 q~hi-1 q~h/>. (20) 

H2 is the contribution of the remaining two-electron operators, which can be 
written as 

2n 

H2 = Z Z daa(Ga.) ~ 9A" <Ga"I G'°>, (21) 
a<b<c<d Gas i<j  

where GaB are the subpatterns of the four elements qS~, ~bb, q~c and ~ba, dx a (GAB) are 
factors associated with the subpatterns GAB and take some simple values, G aB are 
subpatterns of G without elements of ~ba, ~bb, ~bc and ~ba, and G '~ are subpatterns of 
G' without the ith and j th  pairs. Details about the pairing patterns G aB and the 
d~ a-values in various cases are given in the appendix. The second summation runs 
over three subpatterns for each set of the four elements. 9~ B • j are two-electron 
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quantities related to subpatterns GAs and G'ij. G~j are subpatterns of G' with the ith 
and j th pairs, i.e. 

(22) 

Let us suppose 

GAB = ~¢~1-¢.~ (23) 

then gAB j can be evaluated by 

2 2 2i 2 j  

g,Y=EE E E 
k = l  1 = 1 r = 2 i - 1  s = 2 j - - 1  

(9k l r sSk ' r ,S l , s  ' -}- gk l s rSk , s ,S l , r , ) .  (24) 

Here 

gkt,'s = (qS.~(1) ¢b,(2) I g(1, 2) 1 ¢;(1)¢'(2)>, (25) 

sk, = (¢a~1¢; ) ,  sis = ( ¢ b , 1 4 ; )  

and 
k + k ' = 3 ,  l + / ' = 3 ,  r + r ' = 4 i - 1 ,  s + s ' = 4 j - 1 .  

In practice, the evaluation of H z is the most time-consuming step. Actually, all 
the necessary quantities (GAB[ G 'i J) for the evaluation of the overlap matrix 
element and Ha are available after H2 being obtained. With these quantities, the 
computational effort for evaluating the overlap matrix element and H1 is negli- 
gible. A different feature for evaluating He is that it starts from subpatterns G AB and 
the two-electron quantities g~ B The number of the unique subpatterns G aB in- 

i . 

volved in Eq. (21), denoted as NG(n -- 2), is given as follows (see the appendix): 

n(n - -  1) (4n a -- 16n + 17) 
Ndn - 2) = 2 (26) 

The evaluation of all the quantities gAB takes the major part of the CPU time if .j 
N<12.  

3 Efficiency of the algorithm and the decomposition of the pairing patterns 

One can easily know that the expansion of the overlap matrix elements in Eq. (13) 
is not unique. The first summation runs over CA( = q~l--q~j, j = 2,3, ... ,2n). In all 
these (2n -- 1) GA, there is one element ¢1 in common. Actually, we can choose any 
element, say, d?i, as the fixed element of Ga, i.e. 

GA=¢i--qSj  ( j =  1 , 2 , . . . , i - - l , i + 1 , . . . , 2 n )  (27) 
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and G A is subpattern of G without q5 i and ~bj. If Pa(i) ¢ j ,  then G A has one pair as 
c/)v,(i) - (DVA(j) i.e. 

G A =  ~)P.(i) -- (fiPA(J) (28) 

Of course, there is no prescription for choosing the fixed element of GA in the first 
step, and one always obtains (2n - 1) subpatterns G A. The same procedure can 
be applied to these subpatterns, and for each subpattern G A, there are (2n - 2) 
possible ways of pattern decomposition: thus, there are totally ( 2 n - 1 )  (2"-z) 
possible ways to perform the pattern decomposition of the (2n - 1) subpatterns G A. 
The number of the unique subpatterns G AB thus depends on the explicit way of 
decomposition• From a set of N6(n  -- 2) subpatterns GAB, there are (2n - 3) N'("-2) 
possible ways of decomposition, and so on. Therefore, from one pattern G, there 
are extremely large number of ways of pattern decomposition• Figures 1 and 
2 show two different ways of decomposition of a pattern of 8 elements• In Fig. 1, the 
pairs and the elements in each pair are rearranged according to a lexical order (see 
below), and after the reordering, the first element of each subpattern is chosen as 
the fixed one for the decomposition• Let us set a lexical order of orbitals as follows: 

. . . .  , 

and suppose we have a pairing pattern G as below: 

G = 

• b a l  - -  ( ~ a 2  
- 

-  z2. 

(29) 

We say the pairs in the pattern G are arranged in the lexical order if the following 
conditions are satisfied: in each pair, the first element precedes the second one, and 
the first elements of all pairs also follow the same order, i.e. 

al < a2, bl < b2, . . . , z l  < z2, al < bl < ... < Zl. (30) 

In principle, we can also define a different lexical order, and rearrange the pairs 
according to this order• As a comparison, Fig. 2 shows the result without such an 
ordering• Figures 1 and 2 indicate that with the lexical ordering, the pattern 
decomposition leads to a smaller number of No(2)• We have also checked all other 
possible ways, and found NG(2) ranging from 15 to 33. One essential problem is 
how to find an appropriate way of decomposition which gives the minimal number 
of computational operations. Generally, the lexical ordering leads to a significantly 
smaller number of operations than that without this ordering• This can be easily 
seen from Table 2. From the table, one can also see that the computation is greatly 
reduced. For  example, for a system of 20 electrons, there are 6.5 x 108 ( = 19!!) 
permanents of order 10, and the evaluation of each individual permanent requires 
5110 operations [24]; thus, the direct summation method requires 3.3x 1011 
operations. This number is reduced by a factor of about 104 using the successive 
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1--2 
3--4 
5--6 
7--8 

3-..4 2. -4  3--2 3--4 3 - 4  3 - 4  3--4 
5---6 5--6 5--6 2--6 5--2 5--6 5--6 
7---8 7 - 8  7--8 7---8 7---8 2--8 7--2 

z J " 

5--6 4 -6  4--5 4--8 4--7 2--6 2-5  2--8 2 -7  2-6  2 -6  2--4 2 -5  2-5  2--8 2-8  2-4  2-7  2-7  Fig. 2. The decomposition 
of a pattern of 8 elements 
without the lexical ordering 

Table 2. Number of multiplications required for the evaluation of a VB 
overlap matrix element using different procedures of pattern decomposition 

N MI M2 M M/M~ 

8 1.0× 103 1.1 x 103 2.9x 103 2.9 
10 8.6x 103 1.1 x 104 7.1 x 104 8.2 
12 7.5 × 104 9.9 x 104 1.9 × 106 26 
14 6.1 x l0 s 9.3 × 105 5.9 x 107 97 
16 4.8 × 106 8.9 x 106 2.1 × 109 4.3 x 10 z 
t8 4.1 × 107 8.8 x 107 7.9 x 101° 1.9 x 103 
20 3.4x 108 8.9x 108 3.3x 1011 9.9x 103 

N: Number of electrons 
MI: Number of operations using the procedure with lexical ordering 
Mz: Same number without ordering 
M: Number of operations required for the direct summation of all permanents 

expansion method shown above. For  the evaluation of H2, one starts from 
n(n - 1)(4n 2 - 16n + 17)/2 subpatterns GaB. We also find that the pattern de- 
composition with the lexical ordering is much more optimal than that without this 
ordering. 

Further improvement of the efficiency of the algorithm 

The total number of multiplications required for the evaluation of an individual 
Hamiltonian matrix element can be approximately given as 

,,-2 n ! ( 2 m -  1) 
M = ~ NG(m)( m -  1) V(n--m)! + 16n2(n-- 1)2(2n-- 1)(2n--3).  (31) 

m = 2  

The first term gives the number of operations for computing all the quantities 
<GAB I G'iJ>, and the second term gives the number for all the two-electron quanti- 
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ties gAB. The first term depends on the numbers of the subpatterns of various levels 
in the tree of the pattern decomposition. From the above discussion we know that 
the lexical ordering in the pattern decomposition leads to a smaller number  of 
computat ional  operations as compared to the one without such an ordering. In this 
pattern-decomposit ion procedure, just one lexical order is used for the rearrange- 
ment  of the pairs in the subpatterns. We call this a homogeneous lexical ordering. 
Actually, if one follows a more sophisticated procedure for the reordering of the 
pairs in the subpatterns, it should be possible to find a smaller number  of 
operations. The idea is that, instead of using a uniform lexical order, one can 
introduce different lexical orders for different groups of subpatterns, i.e. we divide 
the subpatterns G AB involved in the summation of Eq. (21) into a number of groups, 
and introduce a unique lexical order for each of them. In the procedure of pattern 
decomposition, the pairs of all subpatterns with the parentage of the subpatterns 
G AB are rearranged according to the individual lexical order of the group contain- 
ing the subpatterns GaB. We call this procedure an inhomogeneous lexical order- 
ing. 

In this new scheme, the lexical orders for different groups of subpatterns are 
shown as follows: suppose G AB is a subpattern of G without four elements q~,, qSb, ~bc 
and ~ba, which are from the i, L k and / th  pairs of G, respectively. The lexical order 
for this subpattern is that the i, j, k and lth pairs come first, then the remaining 
pairs, as shown below: 

~ N -  1--q~N 

Using this scheme, the number  of operations is further reduced; see Table 3. For  
example, the number  for 20 electrons is reduced by a factor 1.7, and this factor 
seems to be increasing with increasing N. This new scheme has been implemented 
into a graph-analysis program for generating a universal file of the pattern 

Table 3. Approximate estimation of the number (M) of multiplications for the evaluation of 
a Hamiltonian VB matrix element using different methods 

N 12 14 16 18 20 

MI 2.3 x 10 6 1.4 × 10 7 1.2 x IO s 1.2 × 10 9 1.4 x 101° 
M 2 2.3 x 106 1.3 x 107 8.8 x 107 6.9 × 108 5.9 X 10 9 

M a 2.2 x 106 1.0 x 107 5.9 X 10 7 4.3 x 108 3.3 X 10 9 

N: Number of electrons 
MI: Number of multiplications without lexical ordering 
M2: Same number with homogeneous lexical ordering 
M3:  Number with inhomogeneous lexical ordering 
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decomposition, while the major body of the VB program does not need any change. 
With the file of the pattern decomposition generated by the new procedure, the 
efficiency of the VB program is improved. For example, the VB calculation 
(one structure, without orbital optimization) of a 16-electron system requires about 
1 rain using the previous scheme, and the new scheme requires 35 s. The calcu- 
lations were done on a IBM workstation. 

4 VBSCF calculations 

To test the efficiency of the new scheme, the VBSCF calculations of CH4, C2H2, 
C2H4 and C2H6 have been performed. The optimized geometries at RHF/6-31G 
level are used. The same 6-31G basis sets are used for the orbital optimization. In 
the calculations, the nonorthogonal orbitals are expanded as linear combinations 
of atomic orbitals. All orbitals for the construction of VB wave functions are 
optimized with the super-CI method and the DIIS technique. The bottle-neck of 
the super-CI method is the evaluation of the matrix elements of a large number of 
VB structures (Brillouin states). A "global strategy" is adopted for the systematic 
evaluations of the super-CI matrix elements. The carbon-carbon multiple bonds 
can be described as either a and r~ bonds or equivalent banana bonds I-2]. In this 
paper, both types of VB wave functions are considered. The convergence threshold 
is set to be A C < 10-5 (AC is the maximal difference of the combination co- 
efficients between two consecutive iterations). Usually, the convergence can be 
reached within 10-20 iterations. The calculations are done on a IBM workstation 
RS6000/320H. The results and the CPU time for each VBSCF iteration are shown 
in Table 4. 

From Table 4 one can see an interesting feature of the carbon-carbon multiple 
bonds. For C2H2 and C2H4, the banana-type VB wave functions give slightly 
lower energies than that of the a-n ones. This is in agreement with a more 
sophisticated SCVB calculations with larger basis sets [4]. The CPU time required 
for each iteration increases in a fairy reasonable manner with the increasing 
number of electrons. Therefore, the new group-theoretical approach presented here 
is quite promising. 

Table 4. The Hartree-Fock energy E(HF) and the VBSCF energy E(VB) of CH4, C2H2, C2H4 and C2H6 and 
the CPU time required for each VBSCF iteration 

CH4 C2H2(o-n) CzH2(banana) C2H4(a-n) C2H4(banan~ C2H 6 

E(HF) -40.18055416 --76.79276206 -78.00554475 -79.19650556 
E(VB) -40.24281587 --76.87927942 -76.88689459 -78.10573986 -78.10835869 -79.30708079 
CPU[s] 22 144 283 2300 

5 Concluding remarks 

In this paper, we represent a new group-theoretical approach of nonorthogonal 
ab initio VB calculations in a graphical language. One essential feature which leads 
to the significant reduction of the computational effort is that the intermediate 
quantities characterized by the subpatterns of various numbers of pairs of orbitals 
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are introduced. These quantities are frequently reused in the whole computation. 
To achieve higher efficiency of the algorithm, one needs to find an appropriate  
pattern decomposit ion which gives the minimal number of computer operations. 
Although this paper  is dealing with the evaluation of individual VB matrix 
elements, one can expect that the same strategy can be applied to the systematic 
evaluation of all VB matrix elements. In this case, the intermediate quantities are 
not only frequently reused for computing the overlap and Hamiltonian VB matrix 
elements of an individual pair of VB wave functions, but also may be reused for 
computing other VB matrix elements. Such a global strategy is adopted in the 
super-CI method for VBSCF calculations. Similar "global strategy" was discussed 
by Raimondi et al. [35-] and applied in SCVB calculations. 
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Appendix: d I a-values and pairing pattern of G AB 

Case 1. The four elements ~ba, ~bb, ~bc, ~bd are from two pairs of G, say, q~zk- 1--(/)2k 
and q52~_ 1-q5~. In this case, G AB is a subpattern of G without these two pairs. As 
there are n(n - 1)/2 ways of choosing two pairs, one obtains n(n - 1)/2 subpatterns 
G AB in case 1. The d~-values  are shown below: 

GAB: fq~k-~-~,~ ~,~-1-~,-1 ~ - 1 - ~ ,  

d l  1(GAB): ] - -  1 - -  ½ 

Case 2. The four elements are from three pairs. Thus, there are two elements, say, 
~ba and q~b, from one pair of G, i.e. PA(a) = b, while the other two elements ~bc and ~ba 
are from other two different pairs of G, i.e. PA(C) # d. In this case, G AB is a subpat- 
tern of G consisting of a pair qSpA(~)--~beA(a ). In case 2, one obtains 2n(n --  1)(n -- 2) 
unique subpatterns GAB. Finally, the da a-values are given as follows: 

GAB: f o-q b G- c 

1 
da,(GAB): --  ½ ¼ g 

Case 3. All the four elements are from four different pairs of G. In this case, 
da a(GAB) ---- ¼ for all the three subpatterns GAB. G AB are subpatterns of G in which 
the four elements of GAS are taken away and the remaining four elements in the 
incomplete pairs form two new pairs in the following way: 
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GAB: 

O n e  ob t a in s  2 n ( n  - 1)(n - 2)(n - 3) s u b p a t t e r n s  in this  case. Thus ,  t he  to t a l  n u m -  
ber  of  u n i q u e  s u b p a t t e r n s  G aB i n v o l v e d  in t he  e v a l u a t i o n  of  H2  is g iven  by  Eq.  (21). 
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